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SUMMARY

This paper describes the construction of a discrete �lter algorithm for second-order oscillatory schemes
applied to scalar conservation laws in two space dimensions. Starting from a modi�cation of the Lax–
Wendro� scheme proposed by LeVeque (Numer. Meth. Fluids 1993; 4:175; SIAM J. Numer. Anal.
1996; 33(2):627) we extend this algorithm with an anisotropic di�usion procedure in order to smooth
the spurious oscillations in the vicinity of a shock. To locate the regions identi�ed with the discontinuity
we analyse the discrete data with the help of an indicator for entropy production origin from a discrete
entropy inequality. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. GOVERNING EQUATIONS

We consider a scalar hyperbolic conservation law in two dimensions

@tu+ @xf(u) + @yg(u)=0 (1)

where the �uxes f and g are assumed to be di�erentiable. Independently of the smoothness
of the initial conditions discontinuities develop in general within a �nite time so that weak
solutions u de�ned by ∫

!
(u@t�+ f(u)@x�+ g(u)@y�)dx dy dt=0

have to be considered. Here, !⊂R+0 ×R2, �∈C10 (!) and u∈L1 ∩L∞(!).
Weak solutions are not uniquely de�ned and an entropy condition is needed to single out

the physically relevant solution. (1) is augmented with the entropy inequality

@t�(u) + @x (u) + @y’(u)60 (2)
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holding for all triples (�;  ; �), where � is a convex function and  and � are entropy �uxes
compatible in the following sense (see Reference [1] for details):

 (u)=
∫ u

0
�′(�)f′(�) d�; ’(u)=

∫ u

0
�′(�)g′(�) d� (3)

2. DATA ANALYSIS

As a discrete analogue of (2) we introduce the discrete entropy inequality

d
dt

�i; j(t) +
1
�x
(�n

i+1=2; j −�n
i−1=2; j)−

1
�y

(�n
i; j+1=2 −�n

i; j−1=2)60 (4)

where �i; j(t) is the entropy located at a grid point and �n
i+1=2; j and �

n
i; j+1=2 are numerical

entropy �uxes consistent with  and ’ in just the same sense as the numerical �uxes are
with f and g, see Reference [2].
In principle, one is free to choose arbitrary numerical entropy �uxes as long as they are con-

sistent with the original ones. However, it was shown in Reference [3] that certain pathologies
may occur if the discrete numerical entropy is treated di�erently from the numerical �uxes.
In our understanding every oscillation occurring in the numerical solution should violate the
discrete entropy inequality since there are jumps ‘in the wrong direction’ included. If the nu-
merical entropy �uxes are chosen without reference to the discretization of the numerical �uxes
schemes exhibiting hefty oscillations may satisfy a discrete entropy inequality, see Reference
[4]. Hence, we propose Lax-c consistent numerical �uxes as outlined in Reference [3]. If

Hn
i+1=2 =

1
2(f

n
i+1 + fn

i )−Qn
i+1=2; j(U

n
i+1; j −Un

i; j)

is the numerical �ux for f, then � should be discretized as

�n
i+1=2 =

1
2( 

n
i+1 +  n

i )− Qn
i+1=2; j(�

n
i+1; j − �n

i; j)

The numerical entropy dissipation Q is derived from Q by replacing Un
i; j by �n

i; j and replacing
fn
i; j by  n

i; j.
As already mentioned conservation laws obey an entropy equality. In smooth regions even

an entropy equality is ful�lled, i.e.

@t�(u) + @x (u) + @y’(u)=0

If we look at the discretize model of the entropy inequality, we have

�n+1 = �n − �x(�n
i+1=2; j −�n

i−1=2; j)− �y(�n
i; j+1=2 −�n

i; j−1=2)

In the vicinity of discontinuities in the numerical solution for high-order methods, normally a
violation of this numerical entropy conditions will occur due to the oscillations at the shock
front. These both tasks are related, but in a highly non-trivial way.
So the unmodi�ed Roe scheme [5] possesses the TVD property, but the limit solution allows

entropy violating shocks. On the other hand, the Lax–Wendro� �x by Majda and Osher [6]
produces still oscillations, but satis�es a discrete entropy inequality.
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Hence one sees that this is a di�cult task, but nevertheless we assume regions where
the discrete entropy inequality is violated as region were one has to consider additional
dissipation.
So we de�ne a so-called entropy production

e+i; j :=��n+1;+
i; j :=

{
�n+1
i; j − �n

i; j; �n+1
i; j ¿�n

i; j

0; else
(5)

We use this indicator in the following to distinct between regions where the solution is
smooth and regions with entropy production, where we have to add additional numerical
dissipation.
We remark, that maybe at rarefaction waves the indicator will add di�usion, but due to the

smoothness of the solution in this region this will be neglectable.

3. THE BASIC SCHEME

We consider conservative �nite di�erence schemes as discrete models of conservation laws,
i.e.

d
dt

Ui; j(t)=− 1
�x
(Fn

i+1=2; j − Fn
i−1=2; j)−

1
�y

(Gn
i; j+1=2 −Gn

i; j−1=2) (6)

where Fn
i±1=2; j and Gn

i; j±1=2 denote numerical �ux functions consistent with f and g in the
sense of F(: : : ; u; u; : : :)=f(u); G(: : : ; u; u; : : :)= g(u). As the basic scheme we use the Lax–
Wendro� scheme with the modi�cation proposed by LeVeque [7, 8]. This scheme uses an
additional discretization of the cross �uxes where A=f′; B= g′:

ABuy ≈ 1
4h

AB(�yUi−1; j +�xUi−1; j+1 +�xUi; j +�yUi; j+1)

≈ 1
4h
(A+B+�yUi−1; j + A+B−�xUi−1; j+1 + A−B+�xUi; j + A−B−�yUi; j+1) (7)

Here A+ (resp. A−) represents a correction wave from the left (resp. right) while B+ (resp.
B−) represents information travelling upward (resp. downward) into the corresponding cell.
So the numerical �uxes read as follows:

Fi+1=2; j := F̂i+1=2; j + 1
2�F̃i+1=2; j

F̃i+1=2; j :=−(A−B−)i+1; j+1=2�yui+1; j+1 − (A+B−)i; j+1=2�yui; j+1

−(A−B+)i+1; j−1=2�yui+1; j − (A+B+)i; j−1=2�yui; j

where F̂i+1=2; j is the usual Lax–Wendro� �ux for the right-cell face. The �uxes Fi−1=2; j ; Gi; j+1=2;
Gi; j−1=2 write in an adequate manner.
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If we look at the di�erences of the numerical �ux functions, we can interprete the discretiza-
tion of the cross derivatives as an anisotropic di�usion with non-linear di�usion coe�cients
A+; A−; B+; B−:

F̃i+1=2; j − F̃i−1=2; j ≈ @x(A−B−@yU )i+1=2; j+1=2 + @x(A−B+@yU )i+1=2; j−1=2

+ @x(A+B−@yU )i−1=2; j+1=2 + @x(A+B+@yU )i−1=2; j−1=2

G̃i; j+1=2 − G̃i; j−1=2 ≈ @y(A−B−@xU )i+1=2; j+1=2@y(A−B+@xU )i+1=2; j−1=2

+ @y(A+B−@xU )i−1=2; j+1=2@y(A+B+@xU )i−1=2; j−1=2

This is similar to a class of discrete �lter algorithms from image processing (see References
[9, 10]), we have already interpreted as anisotropic di�usion �lter in the context of numerical
treatment of conservation laws [11, 12].
So the question arises how to modify these correction to get an oscillation-free algorithm.

As already mentioned we use the discrete entropy inequality as an indicator, letting us know in
which regions we have to adjust the scheme. A scheme where we use the entropy production
(5) directly to construct a �lter can be found in Reference [12].

4. THE DISCRETE FILTER

If we are going to write the discretization (6) in the form

Un+1
i; j =

1∑
l; k=−1

clkUi+l; j+k (8)

the original Lax–Wendro� scheme posses the following coe�cients:

ci+1; j: 1
2�[�A

2
i+1=2; j − Ai+1=2; j]

ci−1; j: 1
2�[�A

2
i−1=2; j − Ai−1=2; j]

ci; j+1: 1
2�[�B

2
i; j+1=2 − Bi; j+1=2]

ci; j−1: 1
2�[�B

2
i; j−1=2 − Bi; j−1=2]

ci; j: 1− ci+1; j − ci−1; j − ci; j+1 − ci; j−1

If we are taking the discretization of the cross derivates (7) into account, they are modi�ed
in the following way:

c̃i; j := ci; j + A−(B− − B+)i+1=2; j + A+(B+ − B−)i−1=2; j

+B−(A− − A+)i; j+1=2 + B+(A+ − A−)i; j−1=2

c̃i+1; j := ci+1; j + A−(B+ − B−)i+1=2; j − A−B−
i+1; j+1=2 + A−B+i+1; j−1=2
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c̃i−1; j := ci−1; j + A−(B+ − B−)i−1=2; j − A+B+i−1; j−1=2 + A+B−
i−1; j+1=2

c̃i; j+1 := ci; j+1 + B−(A+ − A−)i; j+1=2 − A−B−
i+1=2; j+1 + A+B−

i−1=2; j+1

c̃i; j−1 := ci; j−1 + B+(A− − A+)i; j−1=2 − A+B+i−1=2; j−1 + A−B+i+1=2; j−1

c̃i+1; j+1 := ci+1; j+1 + A−B−
i+1; j+1=2 + A−B−

i+1=2; j+1

c̃i−1; j+1 := ci−1; j+1 − A+B−
i−1; j+1=2 − A+B−

i−1=2; j+1

c̃i+1; j−1 := ci+1; j−1 − A−B+i+1; j−1=2 − A−B+i−1=2; j−1

c̃i−1; j−1 := ci−1; j−1 + A+B+i−1; j+1=2 + A+B+i−1=2; j−1

Thus, the observation is that the correction waves alter the coe�cients of the original scheme
in the following way:

c̃i; j ¿ ci; j

c̃i+1; j 6 ci+1; j ; c̃i+1; j+1¿0

c̃i−1; j 6 ci−1; j ; c̃i+1; j−1¿0

c̃i; j+16 ci; j+1; c̃i−1; j+1¿0

c̃i; j−16 ci; j−1; c̃i−1; j−1¿0

It is a well-known fact that a scheme written in form (8) is monotone if all coe�cients ck;l
are positive. With the help of an anisotropic di�usion algorithm we try to correct the scheme
in order to remove the spurious oscillations.
The di�usion �lter is constructed in the following way: if the indicator (5) is di�erent from

nil, i.e. indicates a region with entropy violating oscillations, we compute the sum of the
positive coe�cients,

C+ =max(0:0; c̃i+1; j+1)

+max(0:0; c̃i+1; j−1) + max(0:0; c̃i−1; j+1) + max(0:0; c̃i−1; j−1)

and the sum of the coe�cients which are negative,

C− = |min(0:0; c̃i; j) + min(0:0; c̃i+1; j) + min(0:0; c̃i−1; j)
+min(0:0; c̃i; j+1) + min(0:0; c̃i; j−1)|

The amount that we can distribute is characterized by the ratio that we want to distribute,
i.e. C−, and that we can distribute, i.e. C+. Since we do not want to create new negative
weights, we have to limit this ratio by unity. So the distribution ratio reads

D:=min(1;C−=C+)
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Thus the di�usion coe�cients for the cross di�usion weights are
ai±1=2; j±1=2:=c̃i±1; j±1D (9)

The di�usion aligned with the main axes depends on the amount the central coe�cient gains
from the corners. Thus we get

C+i; j=
1=2∑

l; k=−1=2
ai+k; j+l + c̃i; j

and the sum of the coe�cients which are negative,

C−
i; j = |min(0:0; c̃i+1; j) + min(0:0; c̃i−1; j) + min(0:0; c̃i; j+1) + min(0:0; c̃i; j−1)|

The corresponding weights for the di�usion correction read

ai±1=2; j:=|min(0:0; c̃i±1; j)|Di; j ; ai; j±1=2:=|min(0:0; c̃i; j±1)|Di; j (10)

With the coe�cients (9,10) we can write the resulting scheme as

Un+1
i; j = Ûi; j + 1

2�[ai+1=2; j(Un
i+1; j −Un

i; j)− ai−1=2; j(Un
i; j −Un

i−1; j)

+ ai; j+1=2(Un
i; j+1 −Un

i; j)− ai; j−1=2(Un
i; j −Un

i; j−1)

+ ai+1=2; j+1=2(Un
i+1; j+1 −Un

i; j)− ai−1=2; j−1=2(Un
i; j −Un

i−1; j−1)

+ ai−1=2; j+1=2(Un
i−1; j+1 −Un

i; j)− ai+1=2; j−1=2(Un
i; j −Un

i+1; j−1)] (11)

with

Ûi; j=Un
i; j −

�t
h
[Fi+1=2; j − Fi−1=2; j]− �t

h
[Gi; j+1=2 −Gi; j−1=2] (12)

It is possible to write this in a more compact way, but to distinguish here between the �lter
and the basic step, we use this extended notation.
It is necessary to remark, that since the discrete �lter is data dependent, it will not be

monotone in every case. This is due to the fact, that we do not induce new numerical dissi-
pation but distribute the existing di�usion in an optimal way. So there may situations occur,
where it is not possible to make all coe�cients of (8) positive. Due to this fact we consider
this scheme as quasi monotone.

5. NUMERICAL RESULTS

In this section, we present numerical results of the developed schemes (11), (12). The test case
we use is the initial value problem with �uxes f(u)=0:5u2; g(u)= u and entropy �(u)=0:5u2

u(x; y; 0)=




1:5; x=0

−2:5x + 1:5; y=0

−1:0; x=1

0; else

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:353–359



DATA ANALYSIS AND DISCRETE FILTERING 359

We compute the solution on a Cartesian grid with 50× 50 points with CFL-number chosen
to 1. The boundary condition on the upper side of the unit square are determined through
simple extrapolation. The exact solution consist of constant regions to the left and the right,
connected by a fan-like continuous wave which develops into a discontinuity (see Reference
[12] for details). See Plates 1 and 2.

# cells h L1-error Order of accuracy

25 0.04 0.00541324 1.62
50 0.02 0.00191419 1.60
100 0.01 0.00067484 1.59

6. CONCLUSION

We have presented a data dependent discrete �lter for oscillatory numerical schemes for
conservation laws. The algorithm is not full monotone in the sense that the scheme is really
positive, but it reduces the oscillation in the vicinity of discontinuities in a suitable manner.
The constructed �lter can be classi�ed as an anisotropic di�usion �lter known from image
processing.
Further work will be necessary to clarify the question whether this algorithm can be ex-

tended to systems of conservation laws, namely the Euler equations.
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Plate 1. Filtered solution after 20, 40, 60 and 80 time steps.
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Plate 2. Steady-state solution of the test problem.
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